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LETTER TO THE EDITOR 

Exact enumeration of parallel walks on directed lattices 
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Egham, Surrey Tw20 Ow(, UK 

Received 31 March 1993 

, Abstract. Mutually avoiding pairs of parallel walks on a number of d-dimensional lattices 
are mapped onto undirected random walks which return to the origin on a projected (d-1)- 
dimensional lattice. Generating functions for the number of such pairs of a given length 
are thus expressed in terms of standard Green’s functions. Directed lattices considered 
include the directed hypercubic and bodyantred hypercubic. The generating function for 
a directed triangular lattice is also obtained. This work is ageneralization of known results 
for the square  lattice.^ 

Consider a crystal lattice in d dimensions with nearest-neighbour bonds which are 
directed so as to have a positive component along some.chosen axis. Figure 1 shows 
the directed square lattice where the chosen axis is labelled t. In this letter, the 
generating function for the number of pairs of directed walks which start at the origin 
and meet again for the first time at distance s in the direction of the chosen axis is 
expressed in terms of that for undirected random walks on a lattice in d-1 dimensions. 
Figure 1 shows such a pair meeting at distance t=s=9.  It may be noted that the 
directedness constraint makes the walks self-avoiding and the further condition to be 
imposed is mutual avoidance except at the initial site and the final site visited. 

The walk configurations we enumerate are described by Fisher (1984) as reunions 
of vicious drunks and he solved this problem for an arbitrary number of walkers on the 
directed square lattice. In Fisher’s context the directed walks are the spacetime 
trajectories of one-dimensional walkers. 

Each pair of walks forms a polygon of perimeter p .  equal to the sum of the walk 
lengths, and the enumeration problem is therefore isomorphic to the counting of a 
subset of the undirected polygons on the chosen d-dimensional lattice. In the case of 
the hypercubic lattice the subset is known as the staircase polygons. The name derives 
from the case d = 2  where each walk is in the form of a staircase (see figure 1). The 
hypercubic case has recently been solved by Guttmann and Prellberg (1993). The 
present work gives an alternative derivation of their results and provides an extension 
to other lattices. In particular we obtain explicit results for the triangular lattice and 
the body-centrd hypercubic lattice. 

In the case of the hypercubic and body-centred hypercubic lattices, both members 
of the walk pair have the same number of steps and the corresponding polygon 
perimeter p = 2 s  (in figure 1 the polygon has 18 sides). However, for the triangular 
lattice there are polygons which correspond to walk pairs of different lengths and a 
two variable generating function is obtained which determines the counts as a function 
of p and s. 
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Fiyre l .  Adirected walkpairon thesquarelatticemeetingforthefinttimeafterr=s=9 
steps. The projected walks and the difference walk, referred to in the text, take place 
along the x-axis and in the figure the projected walks end at x = - 1. Ignoring the directing 
gives a staircase polygon of perimeter 18. 

For the hypercubic and body-centred hypercubic lattices let R(u) be the generating 
function for R, the number of pairs of s-step directed walks which make a reunion for 
the first time on the last step (R, is the coefficient u6in the expansion of R(u)). Firstly 
we note that equation (5) of Guttmann and Prellberg (1993) extends to both types of 
lattice in the form 

R(u) =$(l- ku 7 Z(U)-') (1) 
where Z(u) is the generating function for the number of ordered pairs of directed s- 
step walks which start at the origin and end at the same lattice point with no other 
constraint, in particular they may intersect any number of times. The coefficient k is 
the number of choices for a given walker at each step (d for the d-dimensional 
hypercubic lattice and Zd-' for the body-centred hypercubic lattice). The origin of 
equation (1) becomes clear when written in the equivalent form 

Z(u)=l+ (ku+2R(u))Z(u). (14 
The first term on the right counts the zero length walks. AU other pairs counted by 
Z(u)  are generated recursively by following any ordered pair of walks having one or 
more steps, meeting for the first time on the last step, with any pair generated by Z(u) 
(including the zero length pair). The k pairs of length 1 are generated by ku and the 
remaining ordered pairs by 2R(u). The factor 2 is included since R(u) counts 
unordered pairs. It will be argued that Z(u) is the generating function for the number 
of undirected single walks of length 2F which return to the origin on a lattice of 
dimension d-1. 

(a) Bodycentred hypercubic lanice. The result is most easily seen for the body- 
centred hypercubic lattice for which the single step vectors are 

B = Gle, + j2e2+ . . . + jd-,ed-, +edlj.= +. 1, n= 1, . . . , d- 1) (2) 
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where {e,, e,, . . . , ed} is the standard orthonormal basis with ei parallel to the ith 
Cartesian axis. Projecting these vectors onto a plane perpendicular to the symmetry 
direction ed is equivalent to subtracting ed from each vector and the resulting projected 
vectors are the possible step vectors of a walk on the undirected body-centred 
hypercubic lattice in d-1 dimensions. There is thus a bijection between the ordered 
pairs of parallel s-step directed walks contributing to Z(u) and the 2s-step undirected 
walks which retum to the origin on the d-1 dimensional lattice. The mapping is 
obtained by reversing the steps of the second walk on the directed lattice. We 
conclude that 

Ztddd, U) = Gkdd- 1, U) (3) 
where the coefficient of d i n  Ghdd- 1, U) is the number of walks which return to the 
origin in 2s-steps on the undirected body-centred hypercubic lattice in d-1 dimensions. 
For d = 2  the directed lattice is the square lattice of figure 1 with el parallel to the 
x-axis and e2 parallel to the t-axis. The projected walks in this case are along the x-axis 
and we obtain the result for the directed square lattice in terms of the generating 
function for undirected one-dimensional random walks which r e m  to the origin 
(Feller 1967). 

Z&) = ZhhC(2, U) = GCb&) = (1 - 4u)-'" (4) 

' R,(u)=[1-2~-(1-4~)'/~]/2 (44 

=u2+2u3+5u4+14uS+42u6+ .'. (46) 

which gives 

in agreement with Guttmann and Prellberg equation (9). For d = 3  and 4, 
Ctd,(d- 1, U) is the generating function for retum to the origin on the undirected 
square and body-centred cubic lattices respectively (which arise in the context of 
Green's functions for solid state physics). These may be expressed in terms of the 
complete elliptic integral K(m) (Montroll and Weiss 1965, Joyce 1971) defined by 

K(m) = (1 - m sin2 8)"" dB r (5 )  

thus 

Z&(u) = Ztd,(3, U) = G,(u) = (2/z)K(16u), (6) 
&(U) = 1 0 ~ '  + 88u3 + 938u4+ 11032u5+ 137784u6+ ' . . (W 
2,,(4, u)~=Gm(u)= [ ( 2 / z ) K ( ~ - ~ ( l - 6 4 ~ ) " ~ ) ] ~  (7) 

(b) Hypercubic lanice. Walks on the directed hypercubic lattice have the single step 
vectors B = {el, e2, . . . , ed} and the symmetry direction is e =el + e, + . . + ed. Let fi 
be the projection of ei on to a plane perpendicular to e. Thef. are the step vectors for 
walks on a cyclically directed hypertriangular lattice in d-1 dimensions. This lattice has 
directed cycles but no preferred direction and for d=3 has been considered by Blease 
(1977) in the context of percolation theory. Projection alone is therefore not sufficient 
to reduce the problem to one of counting undirected walks and we further resort to 
the idea of Fisher (1984) of considering the difference walk. 
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The basic idea is simply illustrated by the case of the directed square lattice (figure 
1). Let x ,  and x, be the coordinates of the two walkers perpendicular to e (the 
coordinates relative to the x-axis in figure l), the difference walker is a one- 
dimensional walker with coordinate x=x,-x,. At each time step the value of x either 
increases by 2, decreases by 2 or stays the same (in one of two ways) if the two walkers 
move parallel to one another. In the latter case the difference walker will be said to 
hop. Whenever the two walkers meet up the difference walker is at x=O, so that to 
determine 2 we must count difference walks which start at and return to the origin 
and visit only points with even x coordinate. If we give weight U to each step of the 
difference walk and ignore the hops then the generating function for difference walks 
is GChaia(u2) where G- is defined above. To allow for the hops we must include a 
factor U(1-2~)  for each site visited by the difference walk and we obtain 

Z , ( ~ ) = G , ~ ~ . ( ~ ~ / ( 1 - 2 ~ ) ~ ) 1 ( 1 - 2 ~ ) = ( 1 - 4 ~ ) - ' "  (8) 

as before. The additional factor of U(1- 2u) allows for there beings + 1 sites in a walk 
of s steps. 

For the general hypercubic lattice the possible steps for the difference walker are 
D=Ct;-Jli , j=l, .  . . ,&.ThestepsinwhichthewalkersmoveparaUeltooneanother 
give zero displacement for the difference walker and there are therefore dzero vectors 
in D for which the difference walker hops. Now imagine that the vectors E are located 
at the origin then the ends of these vectors are at the vertices of a (d- 1)-dimensional 
regular simplex (hypertriangle). f i e r e  are two oppositely directed non-zero vectors in 
D corresponding to each of the $d(d- 1) edges of this simplex and these are the 
nearest neighbour vectors of a (d- 1)-dimensional hypertriangular lattice of coordina- 
tion number d(d-1). The difference walker therefore moves on this undirected 
hypertriangular lattice. The generating function for the number of ordered walk pairs 
on the directed hypercubic lattice which start at the origin and meet up on the last step 
is therefore 

Zh,(d, u)=Ght(d-l, ~ / ( l - d ~ ) ) / ( l  -du). (9) 

Here Gh,(d-1,x) is the generating function for random walks on the undirected 
hypertriangular lattice which return to the origin on the last step but may visit the 
origin any number of times. A walk of s steps is weighted with x'. 

Although the objective of reducing the problem to one of counting undirected 
walks has been achieved, a further simplification is possible. Consider the 
(d- 1)-dimensional hyperdiamond lattice which has two sublattices A and E. Each A 
site has d neighbouring B sites which are reached by the vectors Cf& . . . &}, above 
and each E site has d neighbouring A sites reached by the vectors {-A, -fz, . . . , -fd}. 
This undirected lattice has coordination number d. Suppose that the origin is on theA 
sublattice then after an even number of steps a walker will still be on the same 
sublattice. In particular the walks which return to the origin have an even number of 
steps s = 2t and each such walk may be considered as a sequence of 2-step moves on 
the A sublattice. Since each ;?-step move uses one step vector from the A sublattice 
and one from the B sublattice the possible two step moves are V;-JJi, j=l, . . . ,d) 
which are exactly the same as for the difference walker above. Hence the number off- 
step difference walks which return to the origin is equal to the number of 2t-step walks 
which return to the origin on the (d- 1)-dimensional hyperdiamond lattice, since they 
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are both equal to the numbers of walks with hops on the hypertriangular lattice. We 
conclude that 

&(d, u)=Ghd(d-l, U). (10) 
For d=3 and 4 the (d-I)-dimensional hyperdiamond lattice is the honeycomb 

lattice and the standard diamond lattice respectively. For the honeycomb lattice the 
Green’s function Gh,(u) can be expressed in terms of the elliptic integral K(m) 
(Horiguchi 1972) which together with (10) yields 

Z,bic(u) = Gh,(u) = (1 - u’”)-”(l +3u1”)-“2(2/n)K(m) 

m = 16u3”(1 - ~ ~ ” ) - ~ ( l +  3u1”)-’. 

(11) 

(12) 

where 

Similarly the diamond lattice Green’s function can be expressed as a product of 
two elliptic integrals (Iwata 1969, Joyce 1973). Hence, from (10) the generating 
function for walk pairs on the 4-dimensional hypercubic lattice is 

Z,,,(4, U) = Gd&) = (2/n)’K(m+)K(m-) 

m, = +& 8u(l- 414)”’- f(1- 8u) (1 - 16~)’”. 

(13) 

(14) 

where 

The result ford =4 is the same as that obtained by Guttmann and Prellberg (1993) 
but for d = 3 their result may be written 

&,,(U)= (1 -9~)-”’(~-~)-~~(2/z)[~(m,)~(m~)]~~~ (15) 

1 - 2 m + = ( 1 - ~ ) - ~ ~ ~ ( 1 - 9 ~ ) - ~ ~ ( 1 + 1 8 ~ - 2 7 ~ ~ )  (16) 

1 - 2 m - = ( 1 - ~ ) - ~ ~ ( 1 - 9 u ) - ~ ‘ * ( 1 - 6 u - 3 ~ ~ ) .  (17) 

where 

and 

This is not obviously the same as (11) but may be shown to be so (Joyce and Essam 
1993). Equation (9) also yields results (11) and (13) by using the G functions for the 
triangular (Horignchi 1972) and face centred cubic lattices (Iwata 1969, Joyce 1972) 
respectively. 

(c) Hyperdiamond lattice. A generalization of the directed honeycomb lattice to d 
dimensions may be obtained by expanding the directed hypercubic lattice along its 
symmetry axis e via the duplication of each layer of atoms perpendicular to this 
direction and the insertion of additional connecting bonds directed parallel to e. For 
d = 3 this gives the diamond lattice. The generating function for walk pairs on this 
hyperdiamond lattice is 

Rhd(d, U) = Rhc(d, u2)/u. (18) 
For the directed honeycomb lattice (d= 2) the explicit formula (4a) for the square 

lattice yields 

Rhon(U)=R~(U2)/u=[1-2uZ- (1-4u2)”2]/(2u) 

=u3+2uS+5u7+14u9+42u“+. . . . (19) 
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(d) Triangulur lattice. The single step vectors for the triangular lattice are e=@, 0), 
e, = (1,3'") and e- =(l, -3'") where e is parallel to the z-axis. Define R(u, w)  by 

R(u, w)  = R,u'wO (20) 
S . P  

where R, is the number of walk pairs which meet at z = s and correspond to a polygon 
of perimeter p. The extension of equation (1) is 

R(u, w ) = f ( l - 2 u w 2 - u ~ w ~ - z ( u ,  w)-1) (21) 
where again Z is the generating function for ordered pairs of walks which start at the 
origin and are together on the last step. 2 will be determined by the difference walker 
technique as in the second approach to the square lattice. 

It is convenient to write e,=& and split steps in this direction into two so that all 
steps progress unit distance in the z direction and s then becomes the number of steps 
(see figure 2(u)). The price to be paid for this is that there are now two types of site, 
the original sites (A-type, white) and the newly introduced interstitial sites (type-& 
black). The steps available to the one-dimensional difference walker depend on the 
types of site currently occupied by the two directed walkers. If both are on B sites then 
after the next step both must be on A sites and there is no change in reIative position. 
If one is on A and one is on B then there are three possible next positions: both move 
to A sites with either an increase or decrease of d3 in relative distance, or one moves 
from A to B and the other from B to A with no change in relative position. Lastly if 
both are on A sites there are nine next possible next positions. In four of these both 
stay on A sites and the relative distance either increases or decreases by 2d3  or stays 

Figure 2. (0) Directed triangdar lattice showing the original A-sites (white) and the added 
interstitial B-sites (black). (b) The one-dimensional lattice on which the difference walker 
moves. %e three types of site correspond to both walkcn on A-sites (white), both on 
E-sites (black) and one walker on each type of site (black and white). Steps may be made 
in both directions along the bonds but the loops attached to the vertices correspond to 
hops. AU steps are given a weight U but a further power of w must be included depending 
on the type of bond, as shown. 
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the same in two ways (these are the square lattice moves). Both can move to B sites 
with no change in relative position. In the four remaining cases one walker moves to 
an A site and the other to a B site and the relative distance can increase or decrease by 
d 3 .  The possible moves of the relative walker and the weights to be attached to each 
step are shown in figure 2(b). From this it is clear that the required configurations can 
be enumerated by renormaliiing both the sites and bonds of the simple one- 
dimensional walker. From (4) we obtain 

Z ( U ,  w) = u(l-4(xo)2)-"2 (W 

x =  +2w3u2i(1 - wu) (23) 

~=[1 -2w=u-w~u~-4w~u~l ( l -wu) ] - ' .  (24) 

Z(u, w) = (1 + uw)-'(l-Zuw - 4uw2+ w*u2)-'/*. (25) 

where 

This yields the explicit formula 

Combining this with (21) and expanding we obtain 

R ( ~ ,  w) =zUzw3 + ( U ~ + Z U ~ ) W ~ +  (4u3 + 2u4)w5 + ( zU3+  9u4 + 2u5)w6 

+ (12u4+ 16u5+ 2u6)w7+ . . . . (26) 
The generating function for the polygons grouped by perimeter has the expansion 

R(1, w) = 2w3+ 3w4 + 6w5 + 13w6 + 30w7+72w8 + 178w9+450w'o+ 1 1 5 8 ~ "  

+3023w"+ . . . . (27) 
A generalization of these results to a directed hypertriangular lattice is clearly possible 
using the difference walker technique but the result would be quite complex and will 
not be attempted here. 

The author is grateful to Professor A J Guttmann for introducing him to this problem, 
for stimulating discussions and for communicating his results prior to publication. 
Thanks are also due to Dr G S Joyce for helpful discussion of the Green's functions 
and to Professor P L Taylor for extensive discussions made possible by NATO travel 
grant No. CRG900871. 
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